МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учебно-методическое объединение по образованию в области информатики и радиоэлектроники

УТВЕРЖДАЮ

Республики Беларусь

Первый заместитель Министра образования

_____ В.А.Богуш

Регис	трационный № ТД/тип.
Типовая учебная програм для специ 1-40 05 01 «Информацион	ИЕ ГРАФИКИ И ЗВУКА» ма по учебной дисциплине нальности: нные системы и технологии влениям)»
СОГЛАСОВАНО Начальник Управления электроники и приборостроения, электротехнической, оптико-механической и станкоинструментальной промышленности Министерства промышленности Республики Беларусь	СОГЛАСОВАНО Начальник Главного управления профессионального образования Министерства образования Республики Беларусь
СОГЛАСОВАНО Председатель Учебно-методического объединения по образованию в области информатики и радиоэлектроники	СОГЛАСОВАНО Проректор по научно-методической работе Государственного учреждения образования «Республиканский институт высшей школы»И.В.Титович Эксперт-нормоконтролер
Минс	

СОСТАВИТЕЛИ:

Д.П. Кукин, заведующий кафедрой вычислительных методов и программирования учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент;

А.В. Гуревич, ассистент кафедры вычислительных методов и программирования учреждения образования «Белорусский государственный университет информатики и радиоэлектроники».

РЕЦЕНЗЕНТЫ:

Кафедра информатики и веб-дизайна учреждения образования «Белорусский государственный технологический университет» (протокол №8 от 15.03.2018); П.А.Капустенок, руководитель отдела видеопроизводства компании Vizor Games.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой вычислительных методов и программирования учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 4 от 16.10.2017);
Научно-методическим советом учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № _____ от ______.20);
Научно-методическим советом по информационным системам и технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 1 от 26.10.2017).

Ответственный за выпуск: С.С.Шишпаронок

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Типовая учебная программа по учебной дисциплине «Программирование графики и звука» разработана для студентов учреждений высшего образования, обучающихся по специальности 1-40 05 01 «Информационные системы и технологии (по направлениям)» в соответствии с требованиями образовательного стандарта высшего образования первой ступени и типового учебного плана вышеуказанной специальности.

Дисциплина «Программирование графики и звука» занимает важное место в системе учебной подготовки по специальности 1-40 05 01 «Информационные системы и технологии (по направлениям)». Современные игры невозможны без высококачественной графики и звука, моделирования движения трехмерных объектов в реальном времени. Для достижения этой цели разработаны специализированные аппаратные (графические ускорители) и программные (АРІ) средства. Разработчик игр должен уметь грамотно выбирать такие средства и эффективно использовать их в своих программах. Это, в свою очередь, требует глубокого знания особенностей существующих аппаратных и программных средств, их возможностей и ограничений, приемов повышения качества отображения и эффективности программы.

Умения, формирующиеся в процессе освоения дисциплины «Программирование графики и звука», играют ключевую роль в разработке современных игр, а также могут быть применены для создания фильмов, научного и конструкторского моделирования, презентаций, рекламных роликов и других анимированных сцен в разнообразных областях IT-индустрии.

ЦЕЛЬ, ЗАДАЧИ, РОЛЬ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины: овладение знаниями и умениями, необходимыми для разработки программ, способных изображать на экране в интерактивном режиме движущиеся трехмерные объекты заданной формы, окраски и траектории движения, а также генерировать звуковое сопровождение создаваемых сцен.

Задачи учебной дисциплины:

- приобретение знаний о теоретических основах современной компьютерной графики и звука, включая математический аппарат, используемый для быстрого преобразования координат в графических ускорителях;
- развитие практических умений и навыков написания программ, изображающих на экране произвольные трехмерные объекты и воспроизводящих звуки с привязкой к происходящим событиям, на основе современных средств аппаратного ускорения и программного интерфейса.

Базовыми учебными дисциплинами по курсу «Программирование графики и звука» являются «Основы алгоритмизации и программирования», «Двумерная визуализация», «Математика». В свою очередь учебная дисциплина «Программирование графики и звука» является базой для таких учебных дис-

циплин, как «Разработка виртуальных миров», «Игровые платформы» (учебная дисциплина компонента учреждения высшего образования).

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате изучения учебной дисциплины «Программирование графики и звука» формируются следующие компетенции:

академические:

- 1) владеть исследовательскими навыками;
- 2) уметь работать самостоятельно;
- 3) уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
- 4) владеть системным и сравнительным анализом;
- 5) быть способным генерировать новые идеи (обладать креативностью);
- 6) владеть междисциплинарным подходом при решении проблем;
- 7) иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером;
- 8) обладать навыками устной и письменной коммуникации;
- 9) уметь учиться, повышать свою квалификацию в течение всей жизни;
- 10) использовать основные законы естественнонаучных дисциплин в профессиональной деятельности;
- 11) владеть основными методами, способами и средствами получения, хранения, переработки информации с использованием компьютерной техники;
- 12) на научной основе организовывать свой труд, самостоятельно оценивать результаты своей деятельности;

социально-личностные:

- 1) быть способным к социальному взаимодействию;
- 2) обладать способностью к межличностным коммуникациям;
- 3) уметь работать в команде;

профессиональные:

- 1) владеть методами формального описания, алгоритмами и программными средствами для реализации интерактивных программно-технических систем, включая компьютерные игры;
- 2) владеть современными технологиями анализа предметной области и разработки требований к создаваемым программным средствам, разрабатывать математические модели процессов, документацию и спецификации для создания программного обеспечения;
- 3) разрабатывать программное обеспечение, реализующее графические интерфейсы и звуковое сопровождение интерактивных приложений;
- 4) уметь применять основные математические модели и методы в научных исследованиях в области профессиональной деятельности;
- 5) владеть современными методами, языками, технологиями и инструментальными средствами проектирования и разработки программных продуктов;

- 6) проводить анализ и обосновывать выбор технических, программных средств и систем для автоматизированной поддержки процессов профессиональной деятельности;
- 7) осуществлять тестирование программной продукции и применяемых программных средств на соответствие техническим требованиям;
- 8) разрабатывать функциональные, информационные и другие модели формализованного представления процессов профессиональной деятельности;
- 9) принимать участие в научных исследованиях, связанных с разработкой новых или совершенствованием и развитием имеющихся математических моделей и программных средств;
- 10) владеть принципами и основными навыками, приемами, методами настройки, адаптации и сопровождения программных средств;
- 11) владеть современными средствами инфокоммуникаций;
- 12) анализировать и оценивать собранные данные;
- 13) пользоваться глобальными информационными ресурсами;
- 14) разрабатывать программные средства и системы обеспечения автоматизированной поддержки решений задач профессиональной деятельности;
- 15) выполнять моделирование и проектирование программных средств, разрабатываемых для обеспечения профессиональной деятельности.

В результате изучения учебной дисциплины обучающийся должен:

знать:

- аппаратное и программное обеспечение и их характеристики: функциональность и производительность;
- особенности АРІ: команды, режимы и форматы данных;
- аудио конвейер: описание разработки аудио, отбор семплов, подготовку производства, редактирование волны, управление активами и фазы API кодирования аудио;
- проектирование структуры аудио-интерфейса: обзор оптимальных методов практики проектирования для инкапсуляции аудио-интерфейса;
- графический конвейер: описание программируемого графического конвейера;
- способы изготовления графики: обзор оптимальных методов практики проектирования для создания и инкапсуляции графического API DirectX 3D; *уметь*:
- писать программы API, демонстрирующие существенные признаки компьютерной графики;
- проектировать, разрабатывать и критически оценивать приложения, включающие аудио;
- разрабатывать графические приложения с использованием API DirectX;

владеть:

- способами программирования для платформы Windows;
- принципами построения и функционирования аппаратного и программного обеспечения компьютерной графики и звука.

Программа рассчитана на 298 учебных часов, из них – 176 аудиторных.

Примерное распределение аудиторных часов по видам занятий: лекций – 104 часа, лабораторных занятий – 72 часа. Курсовой проект – 40 часов.

Программа разработана без учета часов, отводимых на проведение текущей аттестации, определенной типовым учебным планом.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

Наименование раздела, темы	Всего	Лекции,	Лабора-
	аудитор-	часы	торные
	ных,		занятия,
	часы		часы
Раздел 1. Основы DirectX	12	6	6
Teмa 1. Введение в DirectX	2	2	-
Тема 2. Простейшее приложение DirectX	10	4	6
Раздел 2. Изображение трехмерных объектов средствами DirectX	106	60	46
Тема 3. Вывод геометрических объектов на экран в Direct3D	12	6	6
Tема 4. Математические основы Direct3D	8	8	-
Тема 5. Установка матриц трансформаций и ка- меры	12	6	6
Тема 6. Шейдеры в Direct3D. Типы шейдеров	14	10	4
Тема 7. Элементы интерактивного управления в DirectX	6	2	4
Tema 8. Текстуры в Direct3D	10	4	6
Тема 9. Установка источников освещения Direct3D	8	4	4
Тема 10. Процедурная генерация моделей для Direct3D	14	6	8
Тема 11. Загрузка мешей в Direct3D	10	6	4
Teма 12. Скелетная анимация в Direct3D	12	8	4
Раздел 3. Синтез звука	58	38	20
Тема 13. Основы программирования звука	16	10	6
Тема 14. Голосовые объекты	12	8	4
Тема 15. Источники и приемники звука в DirectX	12	8	4
Тема 16. Создание игры с использованием графических и акустических средств DirectX	18	12	6
Итого:	176	104	72

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. ОСНОВЫ DIRECTX

Тема 1. ВВЕДЕНИЕ В DIRECTX

Основные понятия DirectX. Предназначение графического процессора. Параллельная обработка данных. Понятие шейдера.

Тема 2. ПРОСТЕЙШЕЕ ПРИЛОЖЕНИЕ DIRECTX

Установка и настройка среды разработки DirectX SDK. Создание окна приложения. Инициализация и создание устройств Direct3D. Визуализация изображения.

Раздел 2. ИЗОБРАЖЕНИЕ ТРЕХМЕРНЫХ ОБЪЕКТОВ СРЕДСТВАМИ DIRECTX

Тема 3. ВЫВОД ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ НА ЭКРАН В DIRECT3D

Разбиение поверхности фигуры на треугольники. Направление обхода треугольников. Задание координат и цвета вершин. Вершинные и индексные буфера DirectX 11, их создание и установка. Отображение фигур на экране.

Тема 4. MATEMATИЧЕСКИЕ ОСНОВЫ DIRECT3D

Системы координат в Direct3D. Понятие лево- и правосторонней системы координат. Математическая библиотека DirectX. Операции с векторами и векторные типы данных, поддерживаемые DirectX 11. Матрицы поворота, растяжения, сдвига. Предназначение четвертой координаты у векторов Direct3D.

Тема 5. УСТАНОВКА МАТРИЦ ТРАНСФОРМАЦИЙ И КАМЕРЫ

Понятие камеры. Матрицы вида и проекции, их инициализация и установка в качестве констант шейдера. Константные буфера в DirectX. Диапазон видимости. Буфер глубин и трафаретный буфер, их установка. Создание изображений, привязанных к камере.

Тема 6. ШЕЙДЕРЫ В DIRECT3D. ТИПЫ ШЕЙДЕРОВ

Язык HLSL. Структура графического конвейера, растеризация. Типы шейдеров. Вершинные и пиксельные шейдеры. Интерполяция величин в ходе растеризации. Понятия семантики данных, стандартных и пользовательских семантик. Задание входного формата вершин. Регистры HLSL, их виды. Динамическая компиляция шейдеров.

Тема 7. ЭЛЕМЕНТЫ ИНТЕРАКТИВНОГО УПРАВЛЕНИЯ В DIRECTX

Организация интерактивного взаимодействия программы с пользователем. Стандартные функции для работы с клавиатурой и мышью. Обработка системных сообщений и функции чтения состояния устройств, их различия.

Тема 8. ТЕКСТУРЫ В DIRECT3D

Понятие текстуры. Типы текстур, двумерные и кубические текстуры. Загрузка текстур в приложение. Установка их в регистры шейдера. Понятие сэмплера и способы автоматического повторения текстуры (прямое, зеркальное, с обрезанием). Использование текстур для отображения текста на экране.

Тема 9. УСТАНОВКА ИСТОЧНИКОВ ОСВЕЩЕНИЯ DIRECT3D

Освещение и цвет в компьютерной графике, их технические ограничения. Виды источников света: направленный, точечный, «фонарь». Матовое рассеивание и зеркальное отражение света, эффект металлической поверхности. Поглощение света в среде, эффекты тумана и дождя. Формулы для расчета отраженного от поверхности света и создание пиксельных шейдеров для этой цели. Нормали к граням и к вершинам, их визуальные различия. Создание ореола. Тени. Использование трафаретного буфера для расчета теневого объема.

Тема 10. ПРОЦЕДУРНАЯ ГЕНЕРАЦИЯ МОДЕЛЕЙ ДЛЯ DIRECT3D

Программная генерация вершин модели по заданной формуле. Вычисление нормалей. Сетка вершин в качестве данных для вершинного и индексного буферов. Программная генерация ландшафта. Понятие случайной функции. Шум Перлина. Загрузка карты из файла. Построение лабиринта.

Тема 11. ЗАГРУЗКА МЕШЕЙ В DIRECT3D

Экспорт и загрузка моделей в Direct3D приложение. Типы файлов для хранения моделей, их различия. Структура файлов объектного типа. Стандартные и пользовательские классы для 3D моделей, разработка пользовательского класса.

Тема 12. СКЕЛЕТНАЯ АНИМАЦИЯ В DIRECT3D

Понятие скелетной анимации. Понятия костей и их иерархии. Стандартные средства Direct3D для загрузки скелетной анимации и ее отображения на экране. Создание плавных переходов между кадрами одной серии и между разными сериями анимации.

Раздел 3. СИНТЕЗ ЗВУКА

Тема 13. ОСНОВЫ ПРОГРАММИРОВАНИЯ ЗВУКА

Сигналы. Цифровые процессоры сигналов (ЦПС). Аналоговые параметры звуковой волны (амплитуда, частота, фаза) и ее дискретизация. Форматы аудио. Несжатый формат (WAV) и сжатые форматы (MP3, OGG). Связь качества звука с форматом и частотой дискретизации.

Тема 14. ГОЛОСОВЫЕ ОБЪЕКТЫ

Аудио интерфейс XAudio2. Три типа голосовых объектов XAudio2: исходные, комбинированные и обработанные. Микширование. Создание акустических эффектов с помощью средств XAudio2.

Тема 15. ИСТОЧНИКИ И ПРИЕМНИКИ ЗВУКА В DIRECTX

Генераторы (источники) звука в XAudio2. Позиционирование источников и приемников звука. Направленные и изотропные источники звука, понятие звукового конуса. Прослушиватели звука.

Тема 16. СОЗДАНИЕ ИГРЫ С ИСПОЛЬЗОВАНИЕМ ГРАФИЧЕСКИХ И АКУСТИЧЕСКИХ СРЕДСТВ DIRECTX

Добавление в игру трехмерных объектов и звукового сопровождения. Взаимодействие объектов, расчет коллизий. Создание игровой сцены. Средства оценки производительности. Методы оптимизации вычислений и отображения объектов. Организация интерактивного взаимодействия с игроком по заданному сценарию.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

ОСНОВНАЯ

- 1. Адамс Д. DirectX: продвинутая анимация. М. : «КУДИЦ-ПРЕСС», 2004. 480 с.
- 2. Попов A. DirectX 10 это просто. Программируем графику на C++. СПб. : БХВ-Петербург, 2008. 265 с.
- 3. Семенов А.Б. Программирование графических процессоров с использованием Direct3D и HLSL. М.: ИНТУИТ, 2007. 180 с.

ДОПОЛНИТЕЛЬНАЯ

- 4. Гончаров Д., Салихов Т. DirectX 7.0 для программистов. Учебный курс. СПб.: Питер, 2001. 528 с.
- 5. Фленов М.Е. DirectX и С++. Искусство программирования. СПб. : БХВ-Петербург, 2006. 384 с.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- контролируемая самостоятельная работа во время проведения лабораторных работ и курсового проектирования;
- внеаудиторная самостоятельная работа;
- творческая и научно-исследовательская работа.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ КОМПЕТЕНЦИЙ СТУДЕНТА

Типовым учебным планом по специальности 1-40 05 01 «Информационные системы и технологии (по направлениям)» в качестве формы текущей аттестации по учебной дисциплине «Программирование графики и звука» рекомендуются экзамен и курсовой проект.

Для промежуточного контроля по учебной дисциплине и диагностики компетенций студентов могут использоваться следующие формы:

- защита лабораторных работ;
- текущий опрос.

РЕКОМЕНДУЕМЫЕ МЕТОДЫ (ТЕХНОЛОГИИ) ОБУЧЕНИЯ

Основные рекомендуемые методы обучения, отвечающие целям и задачам учебной дисциплины:

- учебно-исследовательская деятельность, реализуемая на лабораторных занятиях;
- проектные технологии и творческий подход, реализуемые при выполнении курсового проекта;
- проблемное обучение, реализуемое на лекционных занятиях.

КУРСОВОЕ ПРОЕКТИРОВАНИЕ

Цель курсового проектирования: развитие навыков программирования изображения движущихся трехмерных объектов средствами Direct3D, работы с освещением, текстурами и звуком, а также создания игр с использованием DirectX. Примерный объем пояснительной записки — 32 страницы.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ КУРСОВЫХ ПРОЕКТОВ

- 1. Моделирование движения автомобиля.
- 2. Моделирование движения молекул газа.
- 3. Моделирование разбрызгивания капель.
- 4. Моделирование ходьбы.
- 5. Создание игры «Посадка на планету».
- 6. Создание игры «Путь в лабиринте».
- 7. Создание игры «Выход из пещеры».
- 8. Создание игры «Поражение движущейся мишени».
- 9. Создание игры «Воздушный бой».
- 10. Создание игры «Приход корабля в гавань».

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Создание простейшего приложения DirectX.
- 2. Изображение геометрических объектов в DirectX.
- 3. Движение объектов в DirectX.
- 4. Работа с шейдерами в DirectX.
- 5. Работа с текстурами в DirectX.
- 6. Работа с моделями в DirectX.
- 7. Создание ландшафта средствами DirectX.
- 8. Создание голосовых объектов в DirectX.
- 9. Источники и приемники звука в DirectX.
- 10. Создание простейшей игры средствами DirectX.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ (необходимого оборудования, наглядных пособий и т. п.)

- 1. Visual Studio.
- 2. DirectX SDK.