МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учебно-методическое объединение по образованию в области информатики и радиоэлектроники

УТВЕРЖДАЮ

_	й заместитель Министра образования блики Беларусь И.А. Старовойтова		
Регист	грационный № ТД/ тип.		
ЛИНЕЙНАЯ АЛГЕБРА И АН	НАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ		
направлени 28 Электронная экономика 40 Информатика и вычислительная трупп специальностей: 45 01 Инфостемы связи, 36 0 специа 1-53 01 02 Автоматизированные 1-53 01 07 Информационные технологи 1-58 01 01 Инженерно-психологи технологи	ма по учебной дисциплине для й образования: , 39 Радиоэлектронная техника, гехника, 41 Компоненты оборудования: окоммуникационные технологии и симоженией: системы обработки информации, и управление в технических системах ческое обеспечение информационных нологий,		
	СОГЛАСОВАНО Начальник Главного управления профессионального образования Министерства образования Республики Беларусь С.А. Касперович		
СОГЛАСОВАНО Председатель Учебно-методического объединения по образованию в области информатики и радиоэлектроникиВ.А. Богуш	СОГЛАСОВАНО Проректор по научно-методической работе Государственного учреждения образования «Республиканский институт высшей школы» И.В.Титович		
	Эксперт-нормоконтролер		
Мин	нск 2021		

СОСТАВИТЕЛИ:

- Е.А. Баркова, заведующий кафедрой высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат физико-математических наук, доцент;
- Н.В. Князюк, доцент кафедры высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат физико-математических наук;
- О.В. Рыкова, доцент кафедры высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат физико-математических наук, доцент;
- В.В. Цегельник, профессор кафедры высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», доктор физико-математических наук, профессор.

РЕЦЕНЗЕНТЫ:

Кафедра высшей математики и математической физики Белорусского государственного университета (протокол № 9 от 29.04.2021 г.);

И.В. Белько, профессор кафедры высшей математики учреждения образования «Белорусский государственный аграрный технический университет», доктор физико-математических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой высшей математики учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол № 11 от 22.04.2021 г.);

Научно-методическим советом учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол N 11 от 18.06.2021 г.);

Научно-методическим советом по прикладным информационным системам и технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 5 от 05.05.2021 г.);

Научно-методическим советом по радиосистемам и радиотехнологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол \mathbb{N} 6 от 26.04.2021 г.);

Научно-методическим советом по электронным системам и технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 9 от 17.05.2021 г.);

Научно-методическим советом по разработке программного обеспечения и информационно-коммуникационным технологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол \mathbb{N} 5 от 04.05.2021 г.);

Научно-методическим советом по микро- и наноэлектронной технике, наноматериалам и нанотехнологиям Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 5 от $03.05.2021 \, \Gamma$.);

Научно-методическим советом по системам и сетям инфокоммуникаций Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол N 4 от 04.05.2021 г.);

Научно-методическим советом по информационной безопасности Учебно-методического объединения по образованию в области информатики и радиоэлектроники (протокол № 9 от 03.05.2021 г.).

Ответственный за редакцию: С.С. Шишпаронок

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ

Типовая учебная программа по учебной дисциплине «Линейная алгебра и ааналитическая геометрия» разработана для студентов учреждений высшего образования в соответствии с требованиями образовательных стандартов высшего образования I ступени и типовых учебных планов специальностей:

- 1-28 01 01 «Экономика электронного бизнеса»;
- 1-28 01 02 «Электронный маркетинг»;
- 1-36 04 01 «Программно-управляемые электронно-оптические системы»;
- 1-36 04 02 «Промышленная электроника»;
- 1-39 01 01 «Радиотехника (по направлениям)»;
- 1-39 01 02 «Радиоэлектронные системы»;
- 1-39 01 03 «Радиоинформатика»;
- 1-39 01 04 «Радиоэлектронная защита информации»;
- 1-39 02 01 «Моделирование и компьютерное проектирование радиоэлектронных средств»;
- 1-39 02 02 «Проектирование и производство программно-управляемых электронных средств»;
 - 1-39 02 03 «Медицинская электроника»;
 - 1-39 03 01 «Электронные системы безопасности»;
 - 1-39 03 02 «Программируемые мобильные системы»;
- 1-39 03 03 «Электронные и информационно-управляющие системы физических установок»;
 - 1-40 01 01 «Программное обеспечение информационных технологий»;
 - 1-40 02 01 «Вычислительные машины, системы и сети»;
 - 1-40 02 02 «Электронные вычислительные средства»;
 - 1-40 03 01 «Искусственный интеллект»;
 - 1-40 05 01 «Информационные системы и технологии (по направлениям)»;
 - 1-41 01 02 «Микро- и наноэлектронные технологии и системы»;
 - 1-41 01 03 «Квантовые информационные системы»;
 - 1-41 01 04 «Нанотехнологии и наноматериалы в электронике»;
 - 1-45 01 01 «Инфокоммуникационные технологии (по направлениям)»;
 - 1-45 01 02 «Инфокоммуникационные системы»;
 - 1-53 01 02 «Автоматизированные системы обработки информации»;
- 1-53 01 07 «Информационные технологии и управление в технических системах»;
- 1-58 01 01 «Инженерно-психологическое обеспечение информационных технологий»;
 - 1-98 01 02 «Защита информации в телекоммуникациях».

В связи с возросшей ролью математики в современной науке и технике будущие инженеры, маркетологи, специалисты по защите информации нуждаются в серьезной математической подготовке. Изучение математики развивает логическое мышление, приучает студента к точности, к умению

выделять главное, дает необходимые сведения для понимания сложных задач, возникающих в различных областях человеческой деятельности. Математический аппарат позволяет единообразно описать широкий круг фактов и явлений, провести их детальный количественный анализ, предсказать, как поведет себя объект в различных условиях. Математические модели широко применяются в механике, физике, экономике и т. д.

ЦЕЛИ, ЗАДАЧИ, РОЛЬ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель учебной дисциплины: развитие интеллектуального потенциала студентов, их способностей к логическому и алгоритмическому мышлению; обучение применению новых понятий и методов линейной алгебры и аналитической геометрии, техники математических рассуждений и доказательств.

Задачи учебной дисциплины:

систематизированное и полное изложение основных понятий и методов аналитической геометрии и линейной алгебры;

освещение возможностей применения математики к решению практических задач из курсов физики, IT-дисциплин;

развитие научного мировоззрения у студентов.

Учебная дисциплина «Линейная алгебра и аналитическая геометрия» является базой для таких учебных дисциплин, как «Математические методы в программировании», «Математическое и компьютерное моделирование логистических процессов» (компонент учреждения высшего образования), «Математическое программирование» (компонент учреждения высшего образования).

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

В результате изучения учебной дисциплины «Линейная алгебра и аналитическая геометрия» формируются следующие компетенции:

универсальные:

обладать навыками творческого аналитического мышления;

базовые профессиональные:

применять методы матричного исчисления, анализировать решения систем линейных алгебраических уравнений, исследовать уравнения кривых и поверхностей аналитическими методами для решения прикладных инженерных задач.

В результате изучения учебной дисциплины обучающийся должен: *знать*:

основные методы аналитической геометрии, линейной алгебры; способы описания прямых и плоскостей;

определения кривых второго порядка на евклидовой плоскости и поверхностей второго порядка в евклидовом пространстве;

критерии линейной зависимости векторов; матричную запись систем линейных уравнений; методы решения систем линейных уравнений; *уметь*:

выполнять алгебраические вычисления с векторами в трехмерном евклидовом пространстве;

строить линии на плоскости по заданному уравнению;

работать с простейшими системами координат (декартовой, полярной, цилиндрической и сферической);

выполнять основные алгебраические операции над матрицами;

вычислять определитель квадратных матриц с помощью разложения по строке (столбцу), а также с помощью применения метода эквивалентных преобразований;

решать системы линейных уравнений методом Гаусса, системы неоднородных уравнений методом Крамера и матричным методом;

находить собственные значения и собственные вектора простейших матриц; владеть:

методами аналитического и численного решения алгебраических уравнений;

навыками творческого аналитического мышления.

Программа рассчитана на 120 учебных часов, из них – 68 аудиторных.

Примерное распределение аудиторных часов по видам занятий: лекций – 34 часа, практических занятий – 34 часа.

Программ разработана без учета часов, отводимых на проведение текущей аттестации, определенной типовым учебным планом.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

	D	Π.	П.б	П
Наименование раздела, темы	Всего	Лекции,	Лабора-	Практи-
	ауди-	часы	торные	ческие
	торных,		занятия,	занятия,
	часы		часы	часы
Тема 1. Линейная алгебра. Матрицы				
и операции над ними. Элементарные	6	4	-	2
преобразования				
Тема 2. Определители порядка n , их	4	2		2
свойства и вычисление	4	2	-	2
Тема 3. Обратная матрица	4	2	•	2
Тема 4. Крамеровские системы ал-	4	2		2
гебраических уравнений	4	2	-	2
Тема 5. Векторы, линейные операции	4	2		2
над векторами. Системы координат	4	2	-	2
Тема 6. Векторная алгебра	6	2	-	4
Тема 7. Прямая на плоскости	4	2	-	2
Тема 8. Плоскость и прямая в про-	4	2		2
странстве	4	2	-	2
Тема 9. Кривые второго порядка на	4	2		2
плоскости	4	2	-	2
Тема 10. Поверхности второго порядка	4	2	-	2
Тема 11. Ранг матрицы	4	2	-	2
Тема 12. Теория систем линейных ал-	4	2		2
гебраических уравнений	4	2	-	2
Тема 13. Линейные пространства	4	2	-	2
Тема 14. Линейные операторы	4	2	-	2
Тема 15. Собственные значения и	4			2
собственные векторы	4	2	-	2
Тема 16. Линейные операторы в ев-				
клидовом пространстве. Квадратич-		2	_	2
ные формы				
Итого:	68	34	-	34

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. ЛИНЕЙНАЯ АЛГЕБРА. МАТРИЦЫ И ОПЕРАЦИИ НАД НИМИ. ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ

Матрицы и линейные операции над ними. Произведение матриц. Транспонирование матриц.

Тема 2. ОПРЕДЕЛИТЕЛИ ПОРЯДКА N, ИХ СВОЙСТВА И ВЫЧИСЛЕНИЕ

Определители второго и третьего порядка и их свойства. Алгебраические дополнения и миноры. Определители n-го порядка и их свойства. Определитель произведения двух квадратных матриц одинакового порядка.

Тема 3. ОБРАТНАЯ МАТРИЦА

Обратная матрица и ее построение методом присоединенной матрицы и методом Гаусса.

Тема 4. КРАМЕРОВСКИЕ СИСТЕМЫ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Системы линейных алгебраических уравнений, общие понятия. Матричный способ решения невырожденных линейных систем, формулы Крамера. Метод Гаусса.

Тема 5. ВЕКТОРЫ, ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ. СИСТЕМЫ КООРДИНАТ

Векторы в пространстве и линейные операции над ними. Проекция вектора на ось и на вектор. Линейная зависимость векторов. Базис на прямой, на плоскости и в пространстве. Разложение вектора по базису. Декартова прямоугольная система координат. Радиус-вектор и координаты точки. Деление отрезка в данном отношении. Полярная система координат.

Тема 6. ВЕКТОРНАЯ АЛГЕБРА

Скалярное произведение векторов, его свойства и механический смысл. Условие ортогональности двух векторов. Скалярное произведение в координатной форме. Ориентация тройки векторов в пространстве. Векторное произведение векторов, его свойства, геометрический и физический смысл. Векторное произведение в координатной форме. Условие коллинеарности векторов. Смешанное произведение векторов, его геометрический смысл. Условие компланарности трех векторов.

Тема 7. ПРЯМАЯ НА ПЛОСКОСТИ

Прямая на плоскости и способы ее задания. Различные виды уравнений прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой.

Тема 8. ПЛОСКОСТЬ И ПРЯМАЯ В ПРОСТРАНСТВЕ

Прямая в пространстве, ее канонические и параметрические уравнения. Общие уравнения прямой в пространстве. Угол между двумя прямыми, между прямой и плоскостью. Взаимное расположение двух прямых в пространстве.

Расстояние от точки до прямой. Расстояние между скрещивающимися и параллельными прямыми. Различные виды уравнения плоскости. Взаимное расположение двух плоскостей в пространстве, угол между плоскостями.

Тема 9. КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ

Понятие кривой второго порядка. Окружность, эллипс, гипербола, парабола, их геометрические свойства и канонические уравнения.

Тема 10. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Поверхности второго порядка. Эллипсоиды, параболоиды, гиперболоиды, конусы, цилиндры. Поверхности вращения. Цилиндрические и конические поверхности. Исследование формы методом сечений.

Тема 11. РАНГ МАТРИЦЫ

Ранг матрицы и его вычисление. Условие равенства нулю определителя. Теорема о базисном миноре.

Тема 12. ТЕОРИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Произвольные системы линейных алгебраических уравнений. Теорема Кронекера-Капелли. Однородные системы линейных уравнений. Структура общего решения. Фундаментальная система решений. Неоднородные системы линейных уравнений, структура общего решения.

Тема 13. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

Линейные пространства. Подпространство. Линейная зависимость и линейная независимость векторов, базис и размерность линейного пространства. Координаты вектора.

Тема 14. ЛИНЕЙНЫЕ ОПЕРАТОРЫ

Понятие линейного оператора. Примеры линейных операторов. Матрица линейного оператора в заданном базисе. Действия над линейными операторами.

Тема 15. СОБСТВЕННЫЕ ЗНАЧЕНИЯ И СОБСТВЕННЫЕ ВЕКТОРЫ

Собственные векторы и собственные значения матриц. Характеристическое уравнение и характеристический многочлен матрицы. Собственные векторы и собственные значения симметрических матриц.

Тема 16. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ. КВАДРАТИЧНЫЕ ФОРМЫ

Преобразование координат вектора и матрицы линейного оператора при переходе к новому базису. Подобные матрицы. Квадратичные формы и их матрицы. Приведение квадратичной формы к каноническому виду ортогональным преобразованием. Знакоопределенные квадратичные формы. Критерий Сильвестра знакоопределенности квадратичных форм. Применение квадратичных форм к исследованию кривых и поверхностей второго порядка.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

ОСНОВНАЯ

- 1. Элементы линейной алгебры и аналитической геометрии / Р.Ф. Апатенок [и др]. М.: Высш. шк., 1986.- 286 с.
- 2. Беклемишев, Д. В. Курс аналитической геометрии и линейной алгебры / В. И. Беклемишев. М.: Наука, 1984.-312 с.
- 3. Бугров, Я.С. Элементы линейной алгебры и аналитической геометрии / Я.С. Бугров, С. М. Никольский. М.: Наука, 1980, 1984, 1988. 282 с.
- 4. Жевняк, Р.М. Высшая математика. / Аналитическая геометрия и линейная алгебра. Дифференциальное исчисление / Р. М. Жевняк, А. А. Карпук. Минск: Выш. шк., 1992. 223 с.
- 5. Клетеник, Д.В. Сборник задач по аналитической геометрии / Д. В. Клетеник. М.: Наука, 1986. 224 с.
- 6. Кузнецов, Л. А. Сборник заданий по высшей математике. Типовые расчеты / Л. А. Кузнецов. М.: Высш. шк., 2006. -336 с.
- 7. Сборник задач по математике для втузов: линейная алгебра и основы математического анализа. Под ред. А.В. Ефимова и Б.П. Демидовича.— М.: Наука, 1981.- 480 с.
- 8. Контрольные задания по общему курсу высшей математики /Ж.А.Черняк [и др.]. СПб.: Питер, 2006.
- 9. Математика. Применение пакета Mathematica. В 2 ч. Ч. 1 : Линейная алгебра. Аналитическая геометрия. Введение в математический анализ : пособие / О. А. Вагнер, Л. А. Фомичёва. Минск : БГУИР, 2019. 180 с.
- 10. Аналитическая геометрия и линейная алгебра. Введение в анализ и дифференциальное исчисление функции одной переменной: пособие по учебной дисциплине «Математика» / В.В. Цегельник, Е.А. Баркова, Н.И. Кобринец, В.М. Метельский, О.А. Мокеева, Т.С. Степанова (гриф УМО по образованию в области информатики и радиоэлектроники «Пособие»). Минск: БГУИР, 2017. 198 с.

ДОПОЛНИТЕЛЬНАЯ

- 11. Анго, А. Математика для электро- и радиоинженеров / А. Анго. М.: Наука, 1967.- 780 с.
- 12. Сборник индивидуальных заданий по высшей математике / под ред. А. Н. Рябушко. Минск: Выш. шк.: Ч.1–1990.-303 с.
- 13. Данко, П. Е. Высшая математика в упражнениях и задачах. В 2 ч. / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. М.: Издательский дом «ОНИКС 21 век»: Мир и Образование. 2002.
- 14. Вся высшая математика / М. Л. Краснов [и др.]. М.: Эдиториал УРСС, 2000.- 1200 с.
- 15. Карпук, А. А. Сборник задач по высшей математике: учеб. пособие. В 10 ч. Ч.1: Аналитическая геометрия (Гриф МО РБ «учеб. пособие») / А. А. Кар-

- пук, Р. М. Жевняк. Минск: БГУИР, 1-е изд. 2002; 2-е изд. –2003; 3-е изд. 2004.
- 16. Карпук, А. А. Сборник задач по высшей математике. В 10 ч. Ч.2: Линейная алгебра: с решениями и комментариями (Гриф МО РБ «учеб. пособие») / А. А. Карпук, Р. М. Жевняк, В. В.Цегельник. Минск: БГУИР, 2004. 153 с.
- 17. Борисенко, О.Ф. Высшая математика для технических университетов. Линейная алгебра/ О.Ф. Борисенко, А.А. Карпук. Минск: Харвест, 2012.-224 с.
- 18. Борисенко, О.Ф. Высшая математика для технических университетов. Аналитическая геометрия/ О.Ф. Борисенко, А.А. Карпук. Минск: Харвест, 2012. 208 с.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ И ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

выполнение и защита типовых расчетов по основным разделам курса; доклады на студенческих научных конференциях; выполнение стандартизированных тестов.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ КОМПЕТЕНЦИЙ СТУДЕНТА

Типовыми учебными планами вышеуказанных специальностей в качестве формы текущей аттестации по учебной дисциплине «Линейная алгебра и аналитическая геометрия» рекомендуется экзамен.

Оценка учебных достижений студента осуществляется по десятибалльной шкале.

Для промежуточного контроля по учебной дисциплине и диагностики компетенций студентов могут использоваться следующие формы:

контрольные работы;

самостоятельные работы;

тесты;

доклады на конференциях;

устный опрос в ходе практических занятий;

коллоквиумы по пройденному теоретическому материалу.

РЕКОМЕНДУЕМЫЕ МЕТОДЫ (ТЕХНОЛОГИИ) ОБУЧЕНИЯ

Основные рекомендуемые методы (технологии) обучения, отвечающие целям и задачам учебной дисциплины:

элементы проблемного обучения (проблемное изложение, вариативное изложение, частично-поисковый метод), реализуемые во время чтения лекций и при проведении консультаций;

элементы учебно-исследовательской деятельности, реализация творческого подхода на практических занятиях.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

- 1. Линейная алгебра. Матрицы и операции над ними. Элементарные преобразования;
 - 2. Определители порядка п, их свойства и вычисление;
 - 3. Обратная матрица;
 - 4. Крамеровские системы алгебраических уравнений;
 - 5. Векторы, линейные операции над векторами. Системы координат;
 - 6. Векторная алгебра;
 - 7. Прямая на плоскости;
 - 8. Плоскость и прямая в пространстве;
 - 9. Кривые второго порядка на плоскости;
 - 10. Поверхности второго порядка;
 - 11. Ранг матрицы;
 - 12. Теория систем линейных алгебраических уравнений;
 - 13. Линейные пространства;
 - 14. Линейные операторы;
 - 15. Собственные значения и собственные векторы;
 - 16. Линейные операторы в евклидовом пространстве. Квадратичные формы.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ КОМПЬЮТЕРНЫХ ПРОГРАММ

(необходимого оборудования, наглядных пособий и т. п.)

- 1. Программа Discort.
- 2. Программа Zoom.